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Abstract

We obtain analytical solutions for the perturbed shock
paths induced by time-varying random motions of
a piston moving inside an adiabatic tube of con-
stant area. The variance of the shock location grows
quadratically with time for early times and switches to
linear growth for longer times. The analytical results
are confirmed by stochastic numerical simulations, and
deviations for large random piston motions are estab-
lished.

The English physicist James Joule was perhaps the
first to use the concept of a moving piston in order
to demonstrate the mechanical equivalent of heat in
his pioneering studies, almost two centuries ago. The
moving piston has also been used extensively in funda-
mental studies of fluid mechanics and shock disconti-
nuities in the last century, and this now classical prob-
lem has been solved analytically in one- and also higher
space dimensions (1, 2). It is well known that a shock
wave propagating into a stationary fluid sets it into
motion and raises its pressure, temperature and den-
sity. This situation can be physically realized by a
planar, cylindrical or spherical piston moving at spec-
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ified speed into a stagnant fluid. In gasdynamics, in
particular, in the context of normal shock waves, the
one-dimensional classical problem describes a piston
moving at constant speed in a tube of constant area
and adiabatic walls; the shock wave is created ahead
of the piston. Solutions of this flow problem with arbi-
trary piston speeds are difficult to obtain even for the
one-dimensional case, although recently approximate
analytical solutions have been obtained for accelerat-
ing and decelerating pistons valid only for short times,
e.g. see (3).

In the current work we revisit the one-dimensional
piston problem within the stochastic framework, i.e.,
we allow for random piston motions which may be
changing in time. In particular, we superimpose small
random velocity fluctuations to the piston velocity and
aim to obtain analytical solutions of the stochastic flow
response. Within the context of small random fluctu-
ations, we assume that the same thermodynamic con-
ditions are valid as in the classical problem, i.e., that
an isentropic region exists between the piston surface
and the shock wave. This assumption is justified by
the theory of weak shocks although at the microscopic
level more complex processes may take place. For ex-
ample, it has been reported in (4) that a wall, which
is adiabatic when rigidly fixed, may become conduct-
ing when it is allowed to have a stochastic motion in-
dependently of the value of its macroscopic velocity.
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However, in the macroscopic models we develop here
we will assume that such effects are negligible and thus
all surfaces remain adiabatic.
In the first part of the paper, we employ stochas-

tic perturbation analysis to obtain closed-form ana-
lytical formulas for the perturbed shock paths. The
random piston motion is modeled as a stochastic pro-
cess following a Markov chain corresponding to various
values of correlation length. The main physical find-
ing extracted from the analytical solution is that the
variance of the location of the perturbed shock grows
quadratically with time at early times but it switches
to linear growth at later times. In the second part
of the paper, we perform high-resolution stochastic
simulations using a standard Monte Carlo approach
and also using the polynomial chaos method based on
Wiener-Hermite expansions. The objective is to con-
firm the results of perturbation analysis and determine
their validity range using numerical solutions of the
full nonlinear Euler equations subject to stochastic in-
puts. More generally, the stochastic piston problem we
have defined here serves as a strict testbed for rigorous
evaluation of numerical stochastic solvers, and to this
end, we have compared the performance of polynomial
chaos against the Monte Carlo approach. The results
depend critically on the specific value of correlation
length as well as on the length of time integration. At
early times and/or large values of correlation length
the polynomial chaos method outperforms (often by
orders of magnitude) the Monte Carlo approach, how-
ever it is not as effective in other cases.

1 Stochastic Perturbation Anal-

ysis

We consider a piston having a constant velocity, Up,
moving into a straight tube filled with a homogeneous
gas at rest. A shock wave will be generated ahead of
the piston. A sketch of the piston-driven shock tube
with random piston motion superimposed is shown in
Fig. 1. Given the state ahead of the shock, the speed
of the shock, S, and the thermodynamic states of the
gas behind the shock (i.e., ahead of the piston) are

determined in terms of the piston speed through the
conservation of mass, momentum and energy (5). For
perfect gas with constant specific heats, these relations
are:

ρ0

ρ1
= 1−

Up

S
(1a)

P1

P0
= 1 +

γ

c20
SUp (1b)

S =
γ + 1

4
Up +

√

(

γ + 1

4
Up

)2

+ C2
0 (1c)

where γ = cp/cv is the ratio of specific heats, and
C0 is the local sound speed ahead of the shock. The
sound speed behind the shock can be obtained from
Eqs. 1a and 1b:

C2 = (C2
0 + γSUp)(1− Up/S). (2)

U
p
 + v

p
 ( t ) 

S + v
s
 ( t ) 

U = 0        
P = P

0
      

ρ = ρ
0

C = C
0
      

U = U
p
 + v

p
 ( t )

P = P
1
            

ρ = ρ
1
      

C = C
1
            

Figure 1: Sketch of piston-driven shock tube with ran-
dom piston motion.

In the following we will normalize all velocities with
C0, and thus C0 = 1. We now define the stochastic mo-
tion of the piston by superimposing a small stochastic
component to the steady speed of the piston, i.e.,

up(t) = Up[1 + εV (t, ω)], (3)

where the amplitude ε is small, 0 < ε¿ 1. Our objec-
tive is to find how do the perturbed shock paths due
to the random piston motion deviate from the unper-
turbed ones; the latter are given by

X(t) = S · t. (4)
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Under the small amplitude assumption, the flow field
induced by this perturbation can be obtained based
on the assumption that the propagation speed in the
region behind the shock and ahead of the piston can be
identified as the propagation speed of the unperturbed
flow quantities, i.e., Up±C, where C is the unperturbed
sound speed behind the steadily moving shock as given
by Eq. 2.
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Figure 2: A sketch of shock paths induced by random
piston motions.

To proceed we consider the perturbed Riemann’s
invariants and evaluate them at the shock from

(1±k)vs = j± = vp±
2

γ − 1
ap, with k = C

S + S′Up

1 + γSUp

,

(5)
where S′ = dS

dUp
, and vp, ap and j± are, correspond-

ingly, the perturbed piston velocity, the perturbed lo-
cal sound speed, and the perturbed Riemann’s invari-
ants. These invariants are constant along the unper-

turbed (straight) characteristic lines. For more details
on this derivation and on the assumptions, the inter-
ested reader is referred to (6). Fig. 2 shows a sketch
of the shock paths induced by random piston motions.
Specifically, the distorted lines show an instantaneous
realization of the piston path and shock path. They
are distorted due to induced reflections as sketched in
the plot via the characteristic lines. In the sketch,

the steady and perturbed piston paths are denoted
by Upt and Upt + ε η(t) while those for the shock
paths by S t and S t + ε ξ(t). Also, vp(t2n+1) and
vs(t2n) are on the forward characteristic dx

dt
= Up+C;

vs(t2n+2) while vp(t2n+1) is on the backward charac-
teristic dx

dt
= Up − C. Thus, we have through the use

of the Riemann invariants in Eq. (5), that:

(1 + k)vs(t2n) = vp(t2n+1) +
2

γ − 1
ap(t2n+1) (6a)

(1− k)vs(t2n+2) = vp(t2n+1)−
2

γ − 1
ap(t2n+1). (6b)

Adding Eqs. 6a and 6b to eliminate ap(t2n+1), we
obtain the following recurrence formula:

vs(t2n) = qvp(t2n+1)− rvs(t2n+2), n = 0, . . . , N, . . .
(7)

where

q =
2

1 + k
and r =

1− k

1 + k
.

Eq. 7 defines a recursive relationship between the ve-
locities at the shock and the perturbation of the piston
motion vp(t). Starting at time t0 and iterating up to
N , we obtain from Eq. 7 a set of (N+1) terms. Elimi-
nating vs(t2), vs(t4) . . . vs(t2N ) from this set we obtain

vs(t) = q
N
∑

n=0

(−r)nvp(t2n+1) + (−r)
N+1vs(t2N+2).

(8)
If the perturbation of the piston starts at time ts >

0, the zigzag path of the characteristics coming down
to the origin will end on the piston path; therefore, vs
in the last term in Eq. 8 is zero. On the other hand,
if ts = 0, the zigzag path will zigzag indefinitely to
approach t = 0 i.e., N → ∞. Since r is always less
then unity, the last term of Eq. 8 will approach zero
for any finite value of vs(t∞). Therefore, one can drop
the last term in Eq. 8 to obtain:

vs(t) = q

N
∑

n=0

(−r)nvp(t2n+1), (9)

where N = ∞ if ts = 0, i.e., the perturbation of the
piston starts at t = 0 or it is determined by the last
non-zero value of vp(t2N+1).
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To make effective use of this relation we need to
obtain the relationship of the shock locations at t2n,
t2n+1 and t2n+2. To this end, let us denote the
shock locations at time t2n and t2n+2 by Xs(t2n) and
Xs(t2n+2), correspondingly, and the piston location at
t2n+1 by Xp(t2n+1). Assuming the characteristics are
approximated by straight lines with their slopes given
by Up ± C, we have

Xs(t2n)−Xp(t2n+1) = (Up + C)(t2n − t2n+1)

Xp(t2n+1)−Xs(t2n+2) = (Up − C)

(t2n+1 − t2n+2). (10)

Also, defining the perturbed path of the shock and the
piston by ξ(t) and η(t), we can express

Xs(t2n) = S · t2n + εξ(t2n),

Xs(t2n+2) = S · t2n+2 + εξ(t2n+2),

Xp(t2n+1) = Upt2n+1 + εη(t2n+1).

Finally, substituting these into Eq. 10, we obtain

t2n+1 = αt2n +
ε

C
[η(t2n+1) − ξ(t2n)]

t2n+2 = βt2n + εγ[2η(t2n+1) − ξ(t2n)

− ξ(t2n+2)], (11)

where

α =
C + Up − S

C
< 1

β =
C + Up − S

C + S − Up

< 1

γ =
1

C + S − Up

< 1.

The inequalities above are due to C > 1 and S > Up.
If we drop the term containing ε in Eq. 11, which

is consistent with the small disturbance assumption,
the recurrent relationship is very much simplified and
closed form solutions can be obtained. (We will retain
this term in the next subsection below). With this
simplification we have that:

t2n+1 = αt2n = αβt2n−2 = αβ2t2n−1 . . . = αβnt0

= αβnt.

Eq. 8 then reads as

vs(t) = q

N
∑

n=0

(−r)nvp(αβ
nt), (12)

and the shock speed is then obtained as

S(Up + vs(t)) = S(Up) +
dS

dUp

vs(t) = S + S′vs(t),

with the shock path governed by

dXs

dt
= S + S′vs(t).

Using Eq. 11 we have

ε
dξ

dt
= qS′

∞
∑

n=0

(−r)nvp(αβ
nt), (13)

and taking ξ(0) = 0, we obtain

ξ(t) =
qS′

ε

∞
∑

n=0

(−r)n
∫ t

0

dt1vp(αβ
nt1). (14)

As a check of Eq. 12, we first consider the simple
problem of a piston with its velocity subject to a small
constant perturbation vp starting at t = 0 (e.g., a step
function of size vp). According to Eq. 13, we have

vs(t) = q
∞
∑

n=0

(−r)nvp(t2n+1) = qvp

∞
∑

n=0

−rn = vp

i.e., the velocity behind the shock will be Up + vp for
all t > 0. The shock speed S will change to S(Up+vp),
instead of S(Up).

We now consider vp to be a random process with
zero mean and the following covariance

vp(t) = εUpV (t, ω) (15a)

〈V (t, ω)〉 = 0

〈V (t1, ω), V (t2, ω)〉 = e−
|t1−t2|

A







(15b)
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where A is the correlation time. The above covariance
kernel describes a Markov random process in time.
The larger the value of the correlation time A is the
closer the randommotion approaches a fully-correlated
process - we refer to this as a random variable case. On
the other hand, the smaller the value of the correlation
time A is the closer the motion resembles white noise.
Substituting Eq. 15a into 14, we obtain

ξ(t) = qS′Up

N
∑

n=0

(−r)n
∫ t

0

dt1V (αβ
nt1, ω).

Because of Eq. 15b, we have

〈ξ(t)〉 = 0

〈ξ2(t)〉 = (UpqS
′)2

∞
∑

n=0

∞
∑

m=0

(−r)m+n

∫ t

0

dt1

∫ t

0

dt2e
− α
A
|βnt1−βmt2|. (16)

The double summation in Eq. 16 can be split into
three parts: 1. sum of all diagonal terms, 2. sum of
all the terms above the diagonal, and 3. the terms
described in detail below. It is easy to see, that the
last two sums are equal. Thus, we have

〈ξ2(t)〉 = (UpqS
′)2

[

2
∞
∑

n=1

n−1
∑

m=0

(−r)n+m

∫ t

0

dt1

∫ t

0

dt2e
− α
A
|βnt1−βmt2|

+
∞
∑

n=0

(r2n)

∫ t

0

dt1

∫ t

0

dt2e
−αβn

A
|t1−t2|

]

.

Both integrals in the above equation can be integrated
explicitly to give

〈ξ2(τ)〉 = (UpqS
′A/α)2

[

2

∞
∑

n=1

n−1
∑

m=0

(−r)n+mIn,m(τ)+

∞
∑

n=0

r2nIn,n(τ)

]

(17)

where τ = αt/A, and

In,m(τ) =
2τ

βm
+

1

βn+m

[

e−βmτ + e−βnτ − 1− e−(βm−βn)τ
]

,

where m < n. For τ ¿ 1 it is easy to show that
In,m = τ2. The summations in Eq. 17 can be per-
formed explicitly to obtain

〈ξ2(τ)〉 ≈ (UpqS
′A/α)2

τ2

(1 + r)2
for τ ¿ 1. (18)

For τ À 1, we can neglect the exponential terms in
equation (1), and thus

In,m(τ) =



















2τ

βm
−

1

βn+m
for m < n

2τ

βn
−
2

β2n
for m = n

These expressions for In,m can again be summed ana-
lytically on the right-hand-side of Eq. 17, to obtain

〈ξ2(τ)〉 ≈ (UpqS
′A/α)2

[

2τ(1− r)

(1− r2/β)(1 + r)
−

2

(1− r2/β2)(1 + r/β)

]

, for τ À 1 (19)

For arbitrary values of τ , we calculate the quan-
tities in the square brackets in Eq. 17 numerically.
Because of the smallness of the values of r and β, the
series converges fast. We plot in Fig. 3 the quantity
〈ξ2(τ)〉/(UpqS

′A/α)2 as a function of τ given by Eq.
17 with Up = 1.25 i.e., corresponding to Mach number
of the shockM = 2. The asymptotic formula for small
and large τ given in Eqs. 18 and 19 are also included
in the plot. We observe a qualitative change in the
stochastic response versus time. At early times, the
location of the path scales linearly with time whereas
at later times it scales with square root of time (note
that the variance < ξ >2∼ (Length)2). This interest-
ing result is consistent with physical intuition suggest-
ing that at early times convective motions dominate
while at longer times the diffusion process takes over.
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totic results from Eq. 19.

Within the context of small amplitude random mo-
tions of the piston, we have neglected the last term in
Eq. 11 involving ε. This allowed us to obtain closed-
form analytical solutions, as we explained in the pre-
vious section. Now we revisit this approximation and
retain that term, so we employ the following recurrence
formulas:

t2n+1 = αt2n +
ε

C
[η(t2n+1)− ξ(t2n)]

t2n+2 = βt2n + εγ[2η(t2n+1)− ξ(t2n)− ξ(t2n+2)]

where α, β and γ are given in Eq. (12). For a general

n, we have the following sequence:

t2n = βt2(n−1) + εγ[2η(t2n−1)− ξ(t2(n−1))

−ξ(t2n)]

t2(n−1) = βt2(n−2) + εγ[2η(t2n−3)− ξ(t2(n−2))

−ξ(t2(n−1))]

t2(n−2) = βt2(n−3) + εγ[2η(t2n−5)− ξ(t2(n−3))

−ξ(t2(n−2))]

......

t2 = βt+ εγ[2η(t1)− ξ(t)− ξ(t2)]. (20)

Solving for t2n from the above equations, we obtain:

t2n =βnt+ εγ[

n
∑

j=1

2η(t2j−1)β
n−j − (1 + β) (21)

n−1
∑

j=1

ξ(t2j)β
n−j−1 − ξ(t2n)− βn−1ξ(t)]

Thus, t2n+1 can be expressed as:

t2n+1 = βn[αt−
εξ(t)

C
] +

ε

C
[2β

n
∑

j=1

η(t2j−1)β
n−j+

η(t2n+1)]−
ε(1 + β)

C

n
∑

j=1

βn−jξ(t2j) (22)

The shock path is governed by

ε
dξ

dt
= qS′

∞
∑

n=0

(−r)nvp(t2n+1),

and taking ξ(0) = 0, we have

ξ(t) =
qS′

ε

∞
∑

n=0

(−r)n
∫ t

0

dt1vp(t2n+1). (23)

Considering Eqs. 15b and 23 together, we obtain

〈ξ(t)〉 = 0

〈ξ2(t)〉 = (UpqS
′)2

∞
∑

n=0

∞
∑

m=0

(−r)m+n

∫ t

0

dt1

∫ t

0

dt2e
− 1
A
|t1,2n+1−t2,2m+1| (24)
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To compute the variance of the induced shock path
〈ξ2(t)〉 we need to compute t2n+1. However, Eq. 22
shows that to compute t2n+1 we have to know the
shock path ξ(t) at all the previous reflection times
t2j+1 and t2j . To this end, we solve Eqs. 21 22, 23
and 24 numerically, by employing an iteration method
and setting t2j+1 = αβjt and t2j = βjt as an initial
approximation.

In the following section, we perform stochastic nu-
merical simulations to confirm our findings and estab-
lish limitations of the stochastic perturbation analysis
presented in this section.

2 Stochastic Simulations

We perform two types of stochastic simulations to
verify the results of the previous section, following
a Monte Carlo approach and a polynomial chaos ap-
proach. We employ the full nonlinear Euler equations
with the extra complication that there is an unsteady
stochastic boundary, namely the piston position. To
this end, a boundary-fitted coordinate approach is em-
ployed to transform the equations into a stationary
domain. The transformed Euler equations contain
stochastic source terms proportional to −ρ∂up/∂t and
−ρv∂up/∂t in the momentum and energy equations,
respectively.

In Monte Carlo simulations, we use a Markov chain
in time to represent the stochastic input. In polyno-
mial chaos simulations, the representation of stochastic
inputs is expressed by a Karhunen-Loeve decomposi-
tion; see references (7, 8). Specifically, we consider
different representations of the stochastic inputs cor-
responding to the covariance kernel

< V (t1, ω)V (t2, ω) >= e
−|t1−t2|

A , (25)

where A is the correlation length. A corresponding
Markov chain is employed to represent discretely the

exponential kernel as follows:

V0 = ξ0

V1 = CV0 + fξ1

.........

Vi+1 = CVi + fξi+1

where

C = e
−∆t
A and f =

√

1− C2.

In the Monte Carlo simulation, a random piston ve-
locity up = Up(1+ εVi(t, ω)) is selected from the above
Markov chain as a stochastic input at each time step
ti. In the polynomial chaos representation we em-
ploy Wiener-Hermite expansions for all conservative
and derived stochastic variables of the form

X(ω) =
M
∑

j=0

x̂jΦj(ξ(ω)), (26)

where the basis {Φj} is formed from the Hermite
orthogonal polynomials of degree p. Here ξ(ω) is
a Gaussian variable of dimension N and M is the
total number of deterministic coefficients x̂j , where
M + 1 = (N + p)!/(N !p!). We employ the fifth-order
WENO method in space in order to capture the shock
location accurately and the third-order TVD Runge-
Kutta method in time; see details in (9).

We now present some results for the following con-
ditions: Behind the shock we impose a steady piston
velocity: Up = 1.25 (normalized by the sound speed
ahead of the shock), i.e., corresponding to Mach num-
ber of the shockM = 2. Ahead of the shock the sound
speed is Co = 1 and the pressure is P = 1. We inves-
tigate the stochastic response for various values of the
correlation length A and of the amplitute of the ran-
dom piston motion ε.
In Fig. 4, we plot the variance of the perturbed

shock paths induced by small random piston motions
corresponding to amplitude ε = 0.01 and correlation
lengths A = 0.5, 1, 2 and 10 obtained from Monte
Carlo simulations (2,000 runs). There is good agree-
ment of the Monte Carlo solutions with the analytical
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solutions. In Fig. 5, we plot the variance of the per-
turbed shock paths induced by random piston motions
corresponding to correlation length A = 1 and am-
plitudes ε = 0.01, 0.1, 0.2, 0.3 and 0.5 obtained from
Monte Carlo simulations (3,000 runs). For small am-
plitudes ε = 0.01, 0.1 and 0.2, good agreement is ob-
served between Monte Carlo simulations and analyt-
ical solution. However, for larger amplitude, such as
ε = 0.3 and 0.5, the stochastic simulation deviates
from the analytical solution. We will examine this
discrepancy in some more detail below but first we
present results from the polynomial chaos simulations.

Fig. 6 shows results from polynomial chaos simula-
tions corresponding to piston motions described by a
random variable, i.e. a fully-correlated stochastic pro-
cess whereby A → ∞. The polynomial chaos simula-
tions match quite closely the exact analytical solutions
even over a more than two-orders of magnitude change

in the value of the variance. This verifies the conver-
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Figure 5: Dotted line: Variance of the perturbed shock
paths for A = 1 and ε = 0.01, 0.1, 0.2, 0.3 and 0.5 ob-
tained from Monte Carlo simulations; Solid line: re-
sults from perturbation analysis; Dashed line: results
from equation (19) for later time; Dash-Dotted line:
results from equation (18) for early time.

gence of Hermite-chaos for this case. Fig. 7 shows
results from polynomial chaos simulations correspond-
ing to piston motions described by a random process

with amplitude ε = 0.01 and correlation time A = 1.
In the polynomial chaos simulations, the number of
stochastic dimensions of random input is changed from
N = 3, 6, 50 to 100 (N is also the number of Karhunen-
Loeve modes for representing the stochastic piston mo-
tion). By increasing the dimensions of random input,
the polynomial chaos simulations agree better with the
analytical solution longer. However, there is a finite er-
ror after long time integration unlike the Monte Carlo
simulations.

We now re-examine what is the effect of neglecting
the second term in Eq. (11), which we included in the
refined perturbation analysis of the previous section.
In Fig. 8, we compare the variance of the perturbed
shock paths with large Up + vp(t) random piston mo-
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Figure 6: Variance of the perturbed shock paths for a
random variable (fully-correlated kernel, A→∞) with
amplitude ε = 0.01. Dash-Dotted line: analytical solu-
tion from perturbation analysis; Solid line: numerical
results from polynomial chaos simulations.
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Figure 7: Variance of the perturbed shock paths for
ε = 0.01 and A = 1 obtained from polynomial chaos
simulations with stochastic dimensions N = 3, 6, 50
and 100.

tions obtained from Monte Carlo simulations, analyt-
ical solutions from perturbation analysis, and analyti-
cal results obtained including the corrections for larger
random piston motions. Indeed, significant improve-
ment in the semi-analytical results is evident compared
to Monte Carlo simulations.
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Figure 8: Thick-Solid line and Thick-Dashed line:
Variance of the perturbed shock shock paths corre-
sponding to correlation length A = 1, amplitudes
ε = 0.1 and 0.3 obtained from larger random piston
motion modeling; Dotted line: results from Monte
Carlo simulations; Solid line: results from perturba-
tion analysis; Dashed line: results from equation (19)
for later time; Dash-Dotted line: results from equation
(18) for early time.

3 Summary

The stochastic piston problem is a re-formulation,
within the stochastic framework, of a classical aerody-
namics problem that studies how small random piston
motions affect shock paths. We have developed an an-
alytical solution for the linearized Euler equations for
the stochastic piston problem. Specifically, Eqs. (17),
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(18) and (19) represent the main analytical results of
this paper. The first equation gives the full analytical
expression whereas the last two give asymptotic results
for early times and longer times, respectively. They re-
veal that the variance of the location of the perturbed
shock paths grows initially quadratically with time and
switches to linear dependence for longer times. The
stochastic numerical simulations presented in the pa-
per confirm the results and show good agreement with
the analytical solution for up to 20% amplitudes of the
random piston motion compared to the mean steady
motion.
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